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1. 

In a previous paper [1], approximate analytical solutions of a string moving with time
dependent velocity have been presented. The axial velocity was assumed to be harmonically
varying about a mean velocity. A detailed stability analysis was performed for the cases
of principle parametric and combination resonances. After assuming small fluctuations
about a mean velocity, stability borders were derived up to the first order of
approximation. In this work, small beam effects are further introduced to the problem and
the change in stability borders during transition from string to beam are investigated. An
application of this transient behaviour may be found in band saw vibrations where the
axially moving continua may either be modelled as a strip or a beam.

The dynamic behaviour of axially accelerating strings has been investigated in a number
of papers [1–5]. Instead of velocity variations, tension fluctuations were considered for
strings by Mockenstrum et al. [6]. Constant velocity solutions for strings as well as beams
are vast and can be found in the review papers by Ulsoy et al. [7] and Wickert and Mote
[8]. Recent work for beams moving with constant velocity include those by Wickert and
Mote [9] and Wickert [10], the latter being a non-linear analysis.

2. 

Following a similar derivation as given by Wickert [10], it can be shown that the linear,
time dependent, dimensionless equation of motion for the axially moving beam problem
is

ẅ+ v̇w'+2vẇ'+ (v2 −1)w0+ v2
f wiv =0, (1)

where w is the transverse displacement, v is the axial velocity and v2
f a constant. When

v2
f =0, the equation reduces to that of a travelling string. The dot denotes differentiation

with respect to time and the primes denote differentiation with respect to the spatial
variable x.

Assuming that the velocity is harmonically varying about a constant mean velocity v0,
one writes

v= v0 + ev1 sin Vt, (2)

where e is a small parameter and ev1, which is also small, represents the amplitude of
fluctuations. V is the fluctuation frequency. The aim is to investigate the transition
behaviour from string to beam and hence one assumes that v2

f is small:

v2
f = ev2. (3)

Although, with this choice of ordering, the amplitudes of fluctuations and beam effects
seem to be related, with the insertion of arbitrary v1 and v2 parameters, they can be selected
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independently. Hence v1 =0, v2 $ 0 denotes a beam moving with constant velocity whereas
v1 $ 0, v2 =0 denotes a string moving with harmonically varying velocity.

Substituting equations (2) and (3) into equation (1) and keeping terms up to the first
approximation, one has

ẅ+2v0ẇ'+ (v2
0 −1)w0+ e{v1V cos Vt · w'+2v1 sin Vt · ẇ'

+2v0v1 sin Vt · w0+ v2wiv}=0. (4)

A direct application of perturbations (direct perturbation method) to the partial
differential equation (4) is advantageous over the usual discretization–perturbation
method, since the former method does not require conversion of the equations into other
forms nor the orthogonalization of eigenfunctions [1]. For higher order perturbation
schemes and for finite mode truncations, the direct perturbation method solutions are more
accurate than those of the discretization–perturbation method [11–17].

Using the method of multiple scales [18, 19] and assuming a first order expansion, one
writes

w(x, t; e)=w0(x, T0, T1)+ ew1(x, T0, T1)+ · · · ; (5)

where T0 = t and T1 = et are the usual fast and slow time scales. In terms of the new
variables the time derivatives can be written as

d/dt=D0 + eD1 + · · · , d2/dt2 =D2
0 +2eD0D1 + · · · . (6)

Substituting equations (5) and (6) into equation (4), separating terms at each order of
e, one obtains

O(1): D2
0w0 +2v0D0w'0 + (v2

0 −1)w00 =0, (7)

O(e): D2
0w1 +2v0D0w'1 + (v2

0 −1)w01 =−2D0D1w0 −2v0D1w'0 − v1V cos VT0 · w'0

−2v1 sin VT0 · D0w'0 −2v0v1 sin VT0 · w00 − v2wiv
0 . (8)

In an approximate sense, one may assume that the initial solution w0 resembles that of
the travelling string problem with boundary conditions w0(0, T0, T1)=0 and
w0(1, T0, T1)=0 and hence the required solution is

w0(x, T0. T1)=An (T1) eivnT0cn (x)+A� n (T1) e−ivnT0c�n(x), (9)

where vn are the natural frequencies

vn = np(1− v2
0 ), n=1, 2, 3, . . . , (10)

and cn (x) are the eigenfunctions (mode shapes) corresponding to vn

cn (x)=Cn eianx sin npx, an = npv0, n=1, 2, 3, . . . . (11)

Substituting equation (9) into equation (8), and arranging, one has

D2
0w1 +2v0D0w'1 + (v2

0 −1)w01 =D1An eivnT0(−2ivncn −2v0c'n )

+An ei(V+vn)T0(−1
2v1Vc'n − v1vnc'n +iv0v1c0n )

+An ei(V−vn)T0(−1
2v1Vc�'n + v1vnc�'n +iv0v1c�0n )

+An eivnT0(−v2c
iv
n )+ cc, (12)

where cc denotes the complex conjugate of the preceding terms. Three cases arise
depending upon the value of fluctuation frequency.
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2.1. V away from 2vn and 0

In this case, the solvability condition requires (see reference [18] for details of calculating
solvability conditions)

D1An + k1An =0, (13)

where

k1 = −(i/2)v2n3p3(v4
0 +6v2

0 +1), (14)

The solution is

An =A0 e−k1T1. (15)

It is obvious that the solutions are bounded and no instabilities arise up to this order of
approximation. Secondary instabilities may arise however at higher orders of
approximations.

Substituting equation (15) into equation (9) with T1 = eT0 yields

w0(x, T0, T1)=A0 e(ivn − ek1)T0cn (x)+ cc, (16)

and one can easily see that the approximate natural frequency for a moving beam is
vn + eik1, or

(vb )n = np(1− v2
0 )+ 1

2ev2n3p3(v4
0 +6v2

0 +1). (17)

This analytical result is valid for small v2
f = ev2 values: that is, the equation represents the

transient behaviour from strip to beam.

2. V close to 2vn

In this case, to represent the nearness, one writes

V=2vn + es, (18)

where s is a detuning parameter. The solvability condition requires

D1An + k0An eisT1 + k1An =0, (19)

where k1 is defined previously and k0 is

k0 = (v1/4)[sin 2an −i(1−cos 2an )]. (20)

To perform a stability analysis, one introduces the transformation

An =Bn ei(s/2)T1 (21)

and obtains

D1Bn +(i(s/2)+ k1)Bn + k0B�n =0. (22)

Separating each term into its real and imaginary parts,

Bn =BnR +iBnI , k1 =−ik1I , k0 = k0R −ik0I , (23)

one obtains the coupled equations

B'nR −(s/2− k1I + k0I )BnI + k0RBnR =0, B'nI +(s/2− k1I − k0I )BnR − k0RBnI =0.

(24)
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Figure 1. Comparison of exact and approximate natural frequency values for a moving beam. Approximate
(- - -); exact (—); n=1, vf =0·1.

Assuming solutions of the form

BnR = bnR el1T1, BnI = bnI el1T1 (25)

and substituting, for non-trivial solutions yields

l1 =3z−((s/2)− k11)2 + k2
0R + k2

0I . (26)

For

−zk2
0R + k2

0I Q ((s/2)− k1I )Qzk2
0R + k2

0I (27)

the response is unstable whereas it is stable outside this region. Hence the stability
boundaries are determined by

s=2k1I 3 2zk2
0R + k2

0I . (28)

Figure 2. Stability borders for the string and beam. String (- - -); beam (——); n=1, vf =0·1).
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Figure 3. The stability borders for a beam for the first two modes. n=1 (- - -); n=2 (——); vf=0·1).

Substituting for k0R , k0I and k1I , one has

s= v2n3p3(v4
0 +6v2

0 +1)3 v1 sin an . (29)

Inserting s further into equation (18) gives the final result as

V=2np(1− v2
0 )+ e[v2n3p3(v4

0 +6v2
0 +1)3 v1 sin (npv0)]. (30)

When v2 =0, equation (30) reduces to equation (59) of reference [1] for strings. The two
values of V denote the stability boundaries for small e. Numerical solutions for equation
(30) will be given in the next section.

Note that for a beam with constant velocity v2 $ 0, v1 =0 and hence k0 =0 from
equation (20). This reduces equation (19) to equation (13) and no instabilities arise for this
case.

2.3. V close to 0

A similar calculation yields stable solutions up to the first order of approximation for
this case.

3.  

In this section, numerical plots for the natural frequencies (equation (17)) and stability
borders (equation (29)) will be presented.

By employing the method given by Wickert [10], exact natural frequencies were
calculated and compared with those of approximate ones (equation (17)) as shown in
Figure 1. For vf =0·1 (ev2 =0·01), the agreement is very good for small v0 values. As v0

increases gradually, the approximate and exact solutions diverge, the former being always
higher than the latter. As one increases vf (i.e. if vf =0·2), the range of v0 where reasonable
agreement exists between the exact and approximate solution shrinks.

Next, by using equation (30), the approximate stability borders were plotted for
parametric excitation frequency versus amplitude. In Figure 2, for the first mode, the
stability borders for the string (vf =0) and beam are compared (vf =0·1 or ev2 =0·01)
(unstable solutions in between the lines). It can be seen that, when beam effects are
introduced, the stability borders shift to higher V values without any change in their slopes.
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Finally, Figure 3 shows the stability borders for a beam for the first two modes (vf =0·1).

4.  

The transient behaviour from strip to beam is investigated for axially moving continua.
An approximate analytical expression for the natural frequency is given for the problem.
For velocity profiles harmonically varying about a mean velocity, stability borders are
determined analytically for fluctuation frequency versus amplitudes. Beam effects cause the
stability boundaries to shift to higher frequency values.
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